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Abstract

A saliency attention model for predicting eye direction is proposed in this paper. This work is

inspired by the success of the topological structure and Earth Mover’s Distance (EMD)

approach. Firstly, we extract visual saliency features such as color contrast, intensity con-

trast, orientation, and texture. Then, we eliminate disconnected regions in the feature maps

to keep topological structure. Secondly, we calculate center surround difference using

across-scale EMD between different scales feature maps, rather than utilizing the Differ-

ence of Gaussian (DoG), which is used in many other saliency attention models. Thirdly, we

across-scale fuse the feature maps in different scale and same feature. Lastly, we take

advantage of competition function to calculate feature maps in same feature to form a

saliency map, which is use to predict eye direction. Experimental results demonstrated the

proposed model outperformed the state-of-the-art schemes in eye direction prediction

community.

1. Introduction

When human observe the world, they attend to only a fragment of the total scene at any one

moment. This phenomenon can be represented by visual attention and the conspicuity of each

spatial region can be indicated by a saliency map. In human perception, attention is guided by

this “bottom-up” salience as well as by “top-down” intentions of the viewer. The research of

predicting eye direction focuses on identifying human gaze locations when they are observing

natural scenes. In recent years, it has been receiving increasing interest that saliency attention

was used to predict human eye direction [1].

Two basic theories about the primitives of visual perception are feature analysis theory and

visual topology theory. The feature analysis theory assumes the process of visual perception is

local-to-global. This theory considers that visual features are represented and processed with

separate “feature maps” that are later integrated into a “saliency map” to orient visual attention

[2]. However, the visual topology theory considers the visual perception to be a global-to-local

process. It thinks that wholes are coded superior to their parts or separable properties. The
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core idea of topology theory is that perceptual structure should be understood under the per-

spective of perception and transformation of invariance in transformation [3].

The research of predicting eye direction contains three parts: feature extraction, contrast

computation, and saliency map fusion. In the feature extraction part, Itti et al. proposed a set

of biologically inspired visual features including color contrast, intensity contrast, and orienta-

tion [4]. Liu et al. proposed a set of novel features to detect salient object, this features includ-

ing multi-scale contrast, center-surround histogram, and color spatial distribution [5].

Although this method has achieved good results, the biological principle of these features

needs to be further studied. In contrast computation part, the most influential mechanism is

called “center surround difference”. It utilized an operator of Difference of Gaussian (DoG) to

calculate the contrast between the center location and surrounding region across multi-scale.

In [6] and [7], they computed the contrast in image’s frequency domain, which manipulated

the frequency spectrum to the salient locations. However, these algorithms are time consum-

ing and difficult to achieve real-time application. The last part is to fuse various contrast fea-

tures into a saliency map. Most models linearly combine different contrast features into a

saliency map. Zhao et al. applied a least square algorithm to learn the optimal weight values

based on a set of human eye tracking databases [8]. Because the weight values are quite differ-

ent for different databases, it is hard to extend these weight values to other models. Further-

more, Harel et al. proposed a Graph-Based bottom-up visual saliency model [9], It consists of

two steps: first forming activation maps on certain feature channels, and then normalizing

them in a way which highlights conspicuity and admits combination with other maps. This

model still uses Itti’s visual features and partial improves Itti’s model. Li et al. considered

saliency detection as a frequency domain analysis problem and achieve this by employing the

concept of nonsaliency [10]. Judd et al. adopted supervised learning algorithms to combine

different feature maps [11]. It adopted supervised learning algorithms to combine different

feature maps. Erdem et al. gave the visual saliency estimation by nonlinearly integrating fea-

tures using region covariances [12]. Lu et al. proposed a visual saliency detection algorithm to

explore the fusion of various saliency models in a manner of bootstrap learning [13]. Although

these models have improved detection rate in their respective aspect, the effect is not very

obvious.

In this paper, we aim to model a saliency attention to predict eye direction. We try to inte-

grate feature analysis theory and visual topology theory into visual perception, and we employ

Earth Mover’s Distance (EMD) to provide a more robust metric between the histograms of the

center and surround regions. Our work is inspired by the success of the topological structure

and EMD approach. Firstly, we extract visual saliency features such as color contrast, intensity

contras, orientation, and texture. After that, we eliminate disconnected regions in feature

maps to keep topological structure. Secondly, we calculate center surround difference using

across-scale EMD between different scales feature maps. Lastly, we across-scale fuse the feature

maps in same feature. Then, we take advantage of competition function to calculate feature

maps in same feature to form a saliency map, which is use to predict eye direction. Our pro-

posed saliency attention model is shown in Fig 1.

2. Method

In this part, we extract visual saliency features and eliminate disconnected regions in feature

map to keep topological structure. Then we use across-scale EMD to calculate center surround

difference. Finally, we across-scale fuse the feature maps to form a saliency map, which is use

to estimation gaze direction.
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In Itti et al. model [4], color, intensity and orientation are extracted for visual saliency fea-

tures. Since human being is sensitive to image texture information, texture feature is added in

this paper. Therefore, we extract ten visual features, including: two color contrasts (red/green

contrast and blue/yellow contrast), two intensity contrasts (light-on-dark contrast and dark-

on-light contrast), four orientation features (0˚, 45˚, 90˚, 135˚) and two texture features (origi-

nal and extended LBP) from each input image [14].

2.1 Topological structure

Earlier researches have shown that human visual system is sensitive to the global properties of

scene, so how to extract the global properties has become a fundamental problem in perceptual

organization. A visual scene is usually separated into some different global wholes, like a fore-

ground and a background, only dependent on the global properties. In [3], Chen presented

those global properties could be described as the topological invariable properties, like

Fig 1. The frame work of our proposed saliency attention model.

https://doi.org/10.1371/journal.pone.0181543.g001
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connectivity. So when people speak of an object in the scene, they usually imply the object is

connected.

Humans and all primates are sensitive to topological properties; in particular, the percep-

tion of physical connectivity is prior to the perception of geometrical properties [15]. The

primitive visual perception is the invariants at different geometrical levels. According to

descending order of stability and also from global to local, these properties include topological,

projective, affine, and Euclidean geometrical invariants. Therefore, we select the topology

properties as the global properties in this paper.

The topological properties mainly include connectedness, closedness and hole, while geo-

metric properties such as angle, size, and parallelism do not belong to topological properties.

We just consider the connectedness in this paper as it is the most representative property in

the image processing.

We explore the connectivity for saliency visual attention. The essence of connectivity is a

enclosure topological relationship in the different visual components. In mathematics, this

topological relationship has invariant property under homeomorphisms. That is to say, it is a

quite basic property of a visual scene, regardless of the shape or the scale of the visual content.

Formally, the image connectedness can be defined based on the connectivity of any two pix-

els in the image. On a binary map, an image patch is connected if there exists at least one path

that joins any two given pixels in patch. Here, a path is a sequence of pixels in which any pair

of consecutive pixels is adjacent. In this paper, we consider eight-adjacency. Therefore, a

binary map can be separated into many absolute image patches according to the connectivity

of the pixels.

We can get the topological connected map in the following step. Firstly, we extract

saliency feature maps from original image, and transform all the feature maps into binary

maps. Secondly, we calculate the area of each isolated connected image patch, and then com-

pute the ratio of every connected patch area to the total image area. Thirdly, we arrange all

image patches in descending order, and select the top 10 patches or the patch with a ratio

more than 10% as the topological connected binary map. Lastly, we obtain a topological con-

nected feature map by masking the feature map with topological connected binary map. The

process of obtaining the topology connected feature map is illustrated in Fig 2.

2.2 EMD

Previous visual attention models usually use center surround difference to represent the visual

contrast of the feature maps, and they also use DoG to calculate the center and surround differ-

ence. The DoG filter is particularly performed by applying the Gaussian filter to a multi-scale

Fig 2. An illustration of the image topological structure. (a) Original image, (b) Feature map, (c) Topological connected feature map.

https://doi.org/10.1371/journal.pone.0181543.g002
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image and then calculating their differences. However, point-to-point difference is sample and

is hard to express the contrast information of image patches. EMD can afford a more robust

metric about center surround by comparing their image patch histograms, so EMD is used to

compute the difference in this part.

The classical EMD between two histograms is the lowest cost of transporting one histogram

into another, in which the cost is usually defined as that the amount of weight multiplies the

ground distance between two histograms. This formalization is easily generalized to two nor-

malized histograms with the same number of bins [16].

Given two n-bin histograms H1 ¼ fh1
i ; i ¼ 1; 2; 3; . . . ; ng and H2 ¼ fh2

j ; j ¼ 1; 2; 3; . . . ; ng.
H1 is transformed into H2 by moving “mass” from h1

i to h2
j for every pair of (i, j), such that the

difference of two histograms is minimized. Let another n-bin all-zero histogram be T, and we

denote the flow fij as the amount, which is moved from the bin i in H1 to the bin j in T. Then

we can define the EMD metric between H1 and H2 to be the minimum amount flow that is

demanded to make the histogram of T to be identical with H2. Therefore, the EMD between H1

and H2 is expressed in mathematically as follow:

EMDðH1;H2Þ ¼ min
ffi;j ;i;j¼1;2;3;...;ng

Xn

i¼1

Xn

j¼1

fi;jdi;j ð1Þ

subject to

Xn

j¼1

fi;j ¼ h1

i ;
Xn

i¼1

fi;j ¼ h2

j ; fi;j � 0; and i; j ¼ 1; 2; 3; . . . ; n

where di, j denotes the ground distance between the i-th bin and the j-th bin. Let di, j = |i − j| to

be the L1 distance in this section.

It is very complex to calculate the EMD between two histograms directly. Fortunately, with

above choice, Levina et al. have proven that the EMD between normalized histograms equals

to linear Wasserstein distance [17]. Under those conditions, the EMD can be written as:

EMDðHC;HSÞ ¼
Xn

i¼1

Xi

j¼1

HCðjÞ �
Xi

j¼1

HSðjÞ

�
�
�
�
�

�
�
�
�
�

ð2Þ

where HC and HS denote the n-bin normalized center histogram and surround histogram,

respectively.

2.3 Saliency map

The visual saliency map in this part is an expansion of a classical Itti’s model [4] since it not

only uses EMD to calculate center and surround difference, but also adds texture feature,

except for color, intensity and orientation features.

We construct an image pyramid with m scales to obtain different scales feature maps

(color, intensity, orientation, and texture). For a given location (x, y), we select an adequate

patch around this location, and we can find all corresponding patches in different scales.

Let the small patch (coarser scale, c 2 {1, 2, . . ., m − 2}) as center and big patch (fine scale,

s = c + δ, δ 2 {1, 2}) as the surround. Then we can calculate across-scale EMD maps for the

center and surround patches in same feature. Because the bigger interval between layers in the

pyramid, the smaller response value in the EMD map, while δmeans the interlayer distance,

we set 1/δ as weight value for cross-scale fusing EMD maps. Thus, we can obtain feature
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response conspicuity maps by combining all the across-scale EMD maps:

Rf ðx; yÞ ¼
X

c

X

s¼cþd

1

d
ðEMDðHf ;cðx; yÞ;Hf ;sðx; yÞÞÞ ð3Þ

where Hf, c and Hf, s are the histograms for center and surround in terms of feature f.
We combine all the conspicuity maps into a saliency map. Let the competition algorithm of

spatial feature be a function ff, then we use this function to combine different features into a

visual saliency map [18].

Sðx; yÞ ¼ ff
X

f

Rf ðx; yÞ

 !

ð4Þ

The saliency map shows the importance of each location in the visual scene. By “winner

take all” mechanism and visual transfer method, the proposed model can achieve the goal of

predicting eye direction.

3. Experiment

We use two benchmark eye tracking datasets MIT [11] and Toronto [19] to predict eye direc-

tion performance. They are the most widely used for evaluating eye direction prediction meth-

ods. MIT database consists of 15 participants on 1003 color images, including people portraits,

indoor and outdoor daily life pictures. While Toronto database consists of 20 viewers on 120

color images, and a large portion of images do not contain particular regions of interest. For

each image in both databases, the human density maps and the eye tracking fixations are given

as the ground truth standard for evaluation.

In this paper, we introduce the topological structure and EMD into the calculation of the

saliency map. In order to prove their effectiveness, we calculate four kinds saliency maps: with-

out topology and with DoG (Itti model), without topology and with EMD, with topology and

with DoG, with topology and with EMD (Proposed model). Fig 3 gives two examples of four

kinds saliency maps.

A most widely used measure for saliency model evaluation is the metric of Area Under

Curve (AUC). The curve is Receiver Operating Characteristic curve (ROC). For a given

saliency map, a set of binary maps could be generated by varying threshold. Thus each binary

map can represent a binary classification of the image pixels, in which positive pixels are eye

Fig 3. Two examples of four kinds saliency maps. The first column is input images, and the second column is the human eye density

maps. The third to last column is the saliency maps, which are produced without topology and with DoG, without topology and with EMD,

with topology and with DoG, with topology and with EMD, respectively.

https://doi.org/10.1371/journal.pone.0181543.g003
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fixations predictions. Then the False Positive Rate (FPR) and True Positive Rate (TPR) can be

calculated based on a human eye ground truth fixation map. So it is easy to plot a ROC curve

of FPR against TPR by varying the threshold to generate the binary images. After that, the

AUC score is calculated as the area under ROC curve.

However, center bias has become a serious problem in visual attention. The image center

regions are more possible to be saliency than the image perimeter regions [11], which poses a

serious challenge for fair comparisons. To remove the effect of center bias in two datasets, a

shuffled-AUC (sAUC) measure is proposed by [20], which has become a popular evaluation

method in many recent researches [21]. We use the sAUC to compare the experiment results

for different attention models in this paper.

We compare these four kinds saliency maps with human eye density maps in MIT and

Toronto databases. The statistical results are shown in Table 1.

Table 1. Mean sAUC for four kinds saliency models in two databases.

Without topology and with DoG Without topology and with EMD With topology and with DoG With topology and with EMD

MIT 0.5628 0.6134 0.6347 0.6837

Toronto 0.5925 0.6581 0.6427 0.6960

https://doi.org/10.1371/journal.pone.0181543.t001

Fig 4. Some sample images and corresponding saliency maps produced by compared models. The

first row is original images, and the second row is the human eye density maps. The third to last row are the

saliency maps, which are produced by the model of Harel [9], Judd [11], HFT [10], Erdem [12], Lu [13], and

our proposed, respectively. The left three images belong to the MIT database, and the right three images

belong to the Toronto database.

https://doi.org/10.1371/journal.pone.0181543.g004
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From above experimental results, we easily can find that the values of the third column are

larger than the values of the first column; the values of the fourth column are greater than the

values of the second column. The results demonstrate that the saliency map with topology can

better predict eye fixations than without topology. That is because human visual system is sen-

sitive to the global properties of scene. By keeping topological structure, the saliency map elim-

inates the non-connected areas and highlights the global properties in the scene.

In Table 1, it is also found that the values of the second column are larger than the values of

the first column; the values of the fourth column are greater than the values of the third col-

umn. The results indicate that the saliency map with EMD can better predict eye fixations than

with DoG. The reason is that DoG uses the point-by-point difference, which is sample and is

hard to express the contrast information of image patches, while EMD can afford a more

robust metric about center surround by comparing their image patch histograms, which can

keep global properties of the contrast.

Five state-of-the-art saliency models are evaluated for comparison, including Graph-based

Harel’s model [9], machine learning Judd’s model [11], spectral domain HFT model [10],

Table 2. Mean sAUC for five attention models and our proposed model in MIT database.

Blurring factor Harel’s model Judd’s model HFT model Erdem’s model Lu’s model Proposed model

0.00 0.6412 0.6675 0.6514 0.6517 0.6704 0.6837

0.02 0.6425 0.6708 0.6507 0.6554 0.6722 0.6885

0.04 0.6432 0.6729 0.6494 0.6601 0.6769 0.6913

0.06 0.6436 0.6716 0.6483 0.6643 0.6785 0.6890

0.08 0.6420 0.6691 0.6479 0.6624 0.6816 0.6842

0.10 0.6401 0.6664 0.6452 0.6596 0.6821 0.6796

0.12 0.6383 0.6597 0.6421 0.6572 0.6798 0.6714

https://doi.org/10.1371/journal.pone.0181543.t002

Fig 5. The comparison histograms of Mean sAUC for six different models in MIT database.

https://doi.org/10.1371/journal.pone.0181543.g005
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region covariances Erdem’s model [12], and bootstrapping Lu’s model [13]. Some sample

images and saliency maps of compared models are shown in Fig 4.

Because we just want to compare the saliency maps without/with topological structure,

with Dog, with EMD, we use the original saliency maps directly in Table 1. In order to com-

pare the saliency maps of different models more accurately, we need to introduce blurring fac-

tors. Since blurring play a very important role in comparing different models, we post-process

the saliency map by Gaussian blurring with standard deviation (STD). To achieve a better

comparison, we exhaustively try all possible blurring factors for each compared model. We

define the blurring factor STD as the percent of the image width, and we set the percent from 0

to 12% in experiment. The mean sAUC scores and the comparison histograms are presented

in Table 2 and Fig 5 for MIT database. Table 3 and Fig 6 show the corresponding results for

Toronto database.

Table 3. Mean sAUC for five attention models and our proposed model in Toronto database.

Blurring factor Harel’s model Judd’s model HFT model Erdem’s model Lu’s model Proposed model

0.00 0.6562 0.6803 0.6879 0.6621 0.6884 0.6960

0.02 0.6576 0.6831 0.6900 0.6652 0.6909 0.6984

0.04 0.6551 0.6890 0.6884 0.6685 0.6923 0.7068

0.06 0.6537 0.6897 0.6881 0.6703 0.6895 0.7132

0.08 0.6504 0.6869 0.6876 0.6734 0.6872 0.7043

0.10 0.6481 0.6824 0.6863 0.6697 0.6859 0.6976

0.12 0.6413 0.6786 0.6847 0.6652 0.6827 0.6935

https://doi.org/10.1371/journal.pone.0181543.t003

Fig 6. The comparison histograms of Mean sAUC for six different models in Toronto database.

https://doi.org/10.1371/journal.pone.0181543.g006
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For each model, the optimal sAUC score is expressed in bold font. If we choose the opti-

mal sAUC score as the experimental result of the model, we find that our proposed model

outperforms the given five known models in both databases. The reason is that we not only

introduced the topological structure into the initial feature processing, but also we use robust

cross-scale EMD to calculate the central and surround difference.

4. Conclusion

We have proposed a saliency attention model based on topological structure and EMD to pre-

dict eye direction in this paper. Visual saliency features are extracted from input visual scene,

and the disconnected regions are eliminated in feature maps to keep topological structure.

Then, across-scale EMD is used to calculate the center and surround difference between differ-

ent scales feature maps. Thus the feature maps are across-scale fused in same feature. Lastly, a

spatial competition function is used to combine different feature maps into a visual saliency

map. Experimental results demonstrated that the comparison indexes of the proposed models

were better than the indexes of given models.

Two key contributions are made in the paper, one is that we introduce the topological

structure into the processing of feature maps, and the other is that we use EMD to calculate the

center and surround difference instead of DoG filter. In future work, we will add depth infor-

mation in feature extraction, and extend the model for saliency detection in videos.
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